High Voltage Alloys for Lithium Battery Cathodes
نویسنده
چکیده
Objective GCEP provides funding for research activities of an exploratory nature that test the feasibility and application of potential step-out ideas. These activities focus on novel approaches and innovative concepts associated with technologies that may permit reductions in greenhouse gas emissions on a global scale. While exploratory activities are limited to $100K and a one-year performance period, the preliminary analysis results may support the submission of a detailed proposal.
منابع مشابه
In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing...
متن کاملHow to Uniformly Disperse Nanoparticles in Battery Cathode Coatings
34 T he materials in anodes and cathodes within a lithium-ion battery affect voltage, capacity, and battery life. When a battery is discharging, the lithium ions move from the anode into the cathode. During the charging process, that movement is reversed. Electrolytes conduct the lithium ions and serve as a carrier between the cathode and the anode when electric currents pass through an externa...
متن کاملTwo-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries.
As an alternative to pure lithium-ion, Li+, systems, a hybrid magnesium, Mg2+, and Li+ battery can potentially combine the high capacity, high voltage, and fast Li+ intercalation of Li-ion battery cathodes and the high capacity, low cost, and dendrite-free Mg metal anodes. Herein, we report on the use of two-dimensional titanium carbide, Ti3C2Tx (MXene), as a cathode in hybrid Mg2+/Li+ batterie...
متن کاملNumerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملLithium Sulfide/Metal Nanocomposite as a High-Capacity Cathode Prelithiation Material
DOI: 10.1002/aenm.201600154 due to their limited specific capacity.[18,19] Very recently, we have proposed that conversion reaction materials can be attractive high capacity prelithiation materials for cathodes and demonstrated using Li2O/metal and LiF/metal nanocomposites.[20,21] For example, a high “donor” lithium-ion specific capacity of 609 mAh g−1 has been achieved for a stable nanoscaled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008